(Following Paper ID and Roll No. to be filled in your Answer Book)

Paper ID: 199112

Roll No.

B. Tech.

(SEM. I) THEORY EXAMINATION, 2015-16 ENGINEERING PHYSICS - I

[Time:3 hours]

|Maximum Marks : 100|

Note: Attempt All Sections.

SECTION-A

- 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. (2x10=20)
 - (a) What is non-intertial frame of reference?
 - (b) What is massless particle?
 - (c) Write the main condition for sustained interference.
 - (d) Show the intensity ratio of mass I_{mid}/I_{max} for resolution limit.
 - (e) What is resolving power of grating?
 - (f) What do you mean by optic axis?

- Define the term pumping. (g)
- What is the condition for number of modes in (h) sikngle and multimode optical fibre?
- What is holography? (i)
- Define stimulated emission of radiation. (j)

SECTION-B

Attempt any five of the following:

(10x5=50)

- What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted?
- What is proper length? Derive the expression for it. 3. Calculate the percentage contraction of a rod moving with speed 0.8c in direction inclined at 60° of its own length.
- Explain the folrmation of interference fringes by means of a Fresnel's biprism and derive the expression for the fringe width. In a biprism experiment, the distance between the slit and the screen is 180 cm. The biprism 60 cm away from the slit and its refractive index is 1.5. When a source of wavelength 5890Å is used, the fringe width is found to be 0.012 cm. Find the angle between the two refracting surface of the biprism.

- Give the construction and theory of plane transmission grating. Explain the formation of spectra by it. A diffraction grating used at normal incidence gives a green line (5450Å) in a certain order superimposed on the violet line (4100Å) of the next higher order. If the angle of diffraction is 30°, then how many lines per cm are there in grating?
- Define specific rotation. Describe the construction and working of Laurent's half-shade polarimeter. Calculate specific rotation if the plane of polarization is turned through 25.4°, travelling 25 cm length of 22% sugar solution.
- Describe the principle and working of Ruby laser system. 7. Compare it with He-Ne-laser.
- Discuss the phenomena of attenuation and dispersion in 8. optical fibre.
- What is holography? Explain the principle of holography 9. using construction and reconstruction of images.

SECTION-C

(15x2=30)Attempt any two questions from this section:

Show that the relativistic invariance of the law of 10. (a) conservation of momentum leads to the concept of variation of mass with velocity.

2000

·2000

- (b) What do you mean by acceptance angle and numerical aperture? Derive expression for them.
- (c) A particle of rest mass m₀ moves with speed c/v3. Calculate its mass, momentum, total energy and kinetic energy.
- 11. (a) Discuss the effect of introducing a thin plate in the path of one of the interfering beam in a biprism experiment. Deduce an expression for thickness of plate.
 - (b) What do you understand by missing order spectrum? What particular spectra would be absent if the width of transparencies twice of opacites?
 - (c) Two plane glass surfaces in contact along one edge are separated at the opposite edge by a thin wire. If 25 interference fringes are observed between these edges in sodium light of wavelength $\lambda = 5898\text{\AA}$ of normal incidence, then find the thickness of the wire.
- 12. (a) Discuss construction and working of Nicol prism.
 - (b) What are Einstein's coefficients of emission? Establish relation between them.
 - (c) Determine core radius necessary for single mode operation at $0.85\mu m$ of step index fibre with $\mu_1 = 1.485$ and $\mu_2 = 1.479$. What are the numerical

aperture, critical angle and maximum acceptance angle of the fibre :

Physical Constants:

Mass of electron, $m_0 = 9.1 \times 10^{-31} \text{ kg}$

Mass of Proton, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Speed of Light, $c = 3 \times 10^8 \text{ m/s}$

Planck's Constant, $h = 6.63 \times 10^{-34} \text{ J/s}$

Charge on electron, $e = 1.6 \times 10^{-19} \text{ C}$

Boltzmann's Constant, $k = 1.38 \times 10^{-23} \text{ m}^2\text{kgs}^{-2}\text{K}^{-1}$

—x—

(5)

2000