(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID: 131408

Roll	No.		T		\Box	Τ
		 		 -	 	_

B.TECH.

Theory Examination (Semester-IV) 2015-16

INFORMATION THEORY AND CODING

Time: 3 Hours

Max. Marks: 100

Note: Attempt questions from all Sections as per directions.

Section-A

Q1. Attempt all parts of this section. Answer in brief. (2×10-20)|

- (a) Derive the relation between conditional and joint entropies.
- (b) What is DMC? Explain its significance.
- (c) Give difference between digital audio and audio compression.
- (d) Briefly explain Run Length Encoding (RLE). State its examples.
- (e) Compare and contrast Huffman coding and arithmetic coding.

(1)

P.T.O.

- (f) If C is a valid code vector, then prove that $CH^{T} = 0$ where H^{T} is transpose of parity check matrix H.
- (g) Explain in brief the Golay code.
- (h) State the limitations of sequential decoding.
- (i) What is ARQ? State its types.
- (j) Differentiate among Code rate, Constraint length and Code dimension.

Section-B

Q2. Attempt any five questions from this section. $(10 \times 5 = 50)$

- (a) Prove that the upper bound on the value of entropy H of a source is $\log_2 M$, where M is the number of symbols.
- (b) For a discrete memory less source there are three symbols with probabilities $p_1 = \alpha$ and $p_2 = p_3$. Determine the entropy of the source and sketch its variation for different values of α .
- (c) Define and explain the term information rate. State the relation between information rate and entropy.
- (d) Design a syndrome calculator for a (7, 4) cyclic Hamming code generated by the polynomial $G(p) = p^3+p+1$. Calculatethe syndrome for $Y = (1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1)$.
- (e) State and explain source coding theorem. What is coding efficiency?

(f) A channel has the following channel matrix.?

$$[P(Y/X)] = \begin{pmatrix} 1-p & p & 0 \\ 0 & p & 1-p \end{pmatrix}$$

- (i) Draw the channel diagram.
- (ii) If the source has equally like outputs. Compute the probabilities associated with the channel output for p=0.2.
- (g) Determine For the given code shown in figure 1 obtain the convolution code for the bit sequence 1 1 0 1 1 0 1 1 and decode it by constructing the corresponding code tree.

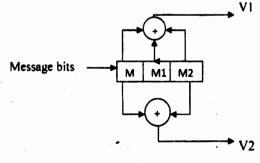


Fig.1

(h) Explain VRC and LRC techniques. Define minimum distance dmm and explain its role in detecting and correcting errors.

Section-C

Attempt any two questions from this section. (15×2=30)

Q3. With the following symbol and their probability of occurrence, encode the message "went#" using arithmetic coding algorithms.

Symbol	е	n	w	t	' #'	
Probability	0.3	0.3	0.1	0.1	0.1	

Q4. For the joint probability matrix (JPM) shown below, H(X,Y), H(X),H(Y), H(X/Y) and H(Y/X)

$$\begin{pmatrix} 0.2 & 0 & 0.2 & 0 \\ 0.1 & 0.01 & 0.01 & 0.01 \\ 0 & 0.02 & 0.02 & 0 \\ 0.04 & 0.04 & 0.01 & 0.06 \\ 0 & 0.06 & 0.02 & 0.2 \end{pmatrix}$$

Q5. How do you obtain the generator polynomial for the cyclic code? Check if the following codes are cyclic or not

Code
$$X_1 = \{0000, 0101, 1010, 1111\}$$

Code
$$X_2 = \{0000, 0110, 1001, 1111\}$$