Printed Pages:	677	ECS-502
(Following Paper I	D and Roll No. to Answer Book)	be filled in your
Paper ID :110512	Roll No.	

B.Tech.

(SEM. V) THEORY EXAM. 2015-16 DESIGN AND ANALYSIS OF ALGORITHMS

[Time:3 hours] [MaximumMarks:100]

Section-A

- 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. (10x2=20)
 - (a) Why should we do asymptotic analysis of algorithms? Explain.
 - (b) Order the following expressions by their asymptotic growth and justify your answer

 $2^{n}, n!, (\log n)!, n^{3}, 2^{\log 2}n, 2^{2n}, n^{\log \log n}, e^{n}$

- (c) How can youy modify Quick sort algorithm to serch an item in a list?
- (d) What are all pairs shortest path?
- (e) Define Convex Hull.
- (f) Discuss various properties of Binomial Tree
- (g) What are the steps to design an algorithm?
- (h) Prove that red-black tree with n internal nodes has height at most $2\log^2(n+1)$
- (i) Prove that the maximum degree of n-node in a binomial tree is log,n.
- (j) What do you understand by 'stable' sort? Name two stable sort algorithms.
- (k) Define Greedy Approach.

Section-B

Attempt any five questions from this section. (5x10=50)

2. Explain insertion in Red Black Tree. Show steps for inserting 9,8,7,6,5,4,3,2, & 1 into empty RB tree.

3. Show all the steps of Strassen's matrix Multiplication algorithm to multiply the following matrices

$$x = \begin{bmatrix} 3 & 2 \\ 4 & 8 \end{bmatrix} and = y = \begin{bmatrix} 1 & 5 \\ 9 & 6 \end{bmatrix}$$

- 4. Define Dynamic programming. How Dynamic Programming approach is used to find the shortest path? Illustrate with an example.
- 5. Find optimal solution to the Fractional Knapasck instances n= 7 and Knapsack capacity M = 15 Where profits and weights are as follows (p₁, p₂p₇) = (10,5,15,7,6,18,3) & (w₁, w₂......w₇) = (2,3,5,7,1,4.1) respectively
- 6. Construct the string- matching automaton for the pattern **P=a a b a b** and illustrae its operation on the text string **T=aaababaabaabaabaab.**
- 7. Illustrate the operation of heap sort on the array A=(6,1,2,4,3,5,7,9,8,0)
- 8. Find an LCS for the sequences. X={x1, x2.....Xm,} and Y={y1,y2.....y_n}. Also show that it requires O (m+n) time.

(3)

2650

9. Write short note on Fast Fourier Transform (FFT).

Section-C

Attempt any two questions from this section. (2x15=30)

10. Attempt both:

- (a) Why the statement "The running time of algorithm A is at least $O(n^2)$ is meaningless"? Explain.
- (b) What is the procedure of partition (A, p, r) in Quick Sort and also define the complexity of Quick Sort.
- 11. What do you mean by Branch & Bound? How TSP can be solve using this approach.

12. Attempt both:

- (a) Discuss the relationship between the class P, NP, NP- complete and NP- hard with suitable example of each class.
- (b) Define Approximation algorithms. What is Approximation ratio? Give an Approximation algorithm for the Travelling Salesman

-×-