Pri	nted Pages:	68		NEC-508
(F	ollowing Paper II	and Roll No Answer Bo		in your
Paj	per ID : 131505	Roll No.	ШШШ	Ш
		B.TECH.		······································
	(SEM. V) THEO	RYEXAMIN	IATION, 2015	-16
	FUNDAMEN	TALS OF E	.M. THEORY	
[Tir	ne:3 hours]		[Total Ma	rks:100]
		Section-A		
Not	e: All questions are	e co mpulsor y.		
1.	Attempt all parts answers of all par		·	s. Write (0x2=20)
(a)	State Stokes theo	rem.		
(b)	Give the applicat	ion of cross pr	oduct.	
(c)	Find gradient of	$W = 2\rho^3 z \cos \theta$	2 ø .	

What is Lorentz force?

What is an equipotential surface?

(d)

(e)

- (f) Define Scalar magnetic potential.
- (g) State Poynting Theorem.
- (h) Define Convection current.
- (i) Write the Maxwell equation in differential and integral form for static magnetic fields.
- (j) Give the relation between Magnetic field and Magnetic flux density?

Section-B

Attempt any five questions from this section. (5x10=50)

- 2. Given the potential $V = \frac{10}{r^2} \sin \theta \cos \phi$. Find the electric flux density D at $\left(2, \frac{\pi}{2}, 0\right)$.
- 3. State and explain Maxwell's equations for electrostatics and magnetostatics. Discuss its physical significance.
- 4. Prove the vector triple product identity

 AXBXC = B(A.C)-C(A.B). Evaluate div (curlA) if $A = \frac{\sin \phi}{r^2} a_r \frac{\cos \phi}{r^2} a_{\phi}.$

- 5. Explain the pehnomenon of polarization and explain its types.
- 6. State Coulomb's law. Derive an expression for electic field intensity due to line charge density ρ_i .
- 7. Derive the expression of reflection and transmission coefficients for normal incidence. Derive the relation between the two.
- 8. Find the magnetic field intensity due to infinitely long charged wire as an application of Ampere circuital law.
- 9. Find the value of α (attenuation), β (Phase Constant) for good conductors. Find out the angle of characteristic impedence for good conductors.

Section-C

Attempt any two questions from this section. (2x15=30)

 Discuss the solution of plane wave equation in conducting media (Lossy Dielectric). Derive the above up to propagation constant, attenuation constant and phase constant.

- 11. Define propagation constant and characteristic impedace. Derive the boundary conditions for electric field between two dielectrics having different permittivity interfaces.
- 12. Find the expression for α, β, γ for lossless or perfect dielectric medium. A 10 GHz plane wave travelling in free space has an amplitude of $E_x=10V/m$. find V, β, λ, η and the amplitude of H.

—x—