Printed Pages:			563	EEC-502/NEC-502
(Following Paper ID and Roll No. to be filled in your Answer Book)				
Paper ID : 131522 131502			Roll No.[
B.Tech.				
(SEM. V)(ODD SEM) THEORY EXAMINATION, 2015-16				
PRINCIPLES OF COMMUNICATION				
[Time:3 hours]				[MaximumMarks:100
			Section-A	
Q1.	Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(2 \times 10=20)$			
•	(a) Draw the Block diagram of SSb synchronous demodulation system.			
	(b)	List the advantages of DSB-FC modulation sheeme.		
	 (c) Write two properties of Bessel's Function J_n(β) (d) Mention three direct methods of FM generation. 			
	(e)		What is the	components from 300 Hz minimum possible rate at e sampled?
	(f)	Mention the T-4 carrier sy		rates for T-1, T-2, T-3 and

- (g) Which scheme utilizes the most number of bits per symbol- Delta modulation of Adaptive delta modulation?
- (h) Define noise bandwidth.
- (i) What is the shape of autocorrelation function of a random process having power spectral density (PSD) with only DV term?
- (j) Convert 120 μ W into dBm.

Section-B

Note: Attempt any five questions from this section. $10 \times 5 = 50$

- Q2. What is the basic limitation SSb modulation scheme? How it is eliminated by Vestigial Side Band modulation.
- Q3. Mention advantages and applications of VSB modulation. Two signals m1 (t) and m2 (t), both band-limited to 5000 rad/sec, are to be transmitted simultaneously over a channel by the multiplexing sheeme as shown in figure 1 below. The single at point b is the signal at point c is transmitted over a channel.
 - (i) Sjetch the signal spectra at a, b, c.
 - (ii) What must be the bandwidth of the channel?

(2)

- Q4. Prove that bandwisth of an FM wave is infinity. Also represent the single tone FM wava as a function of Bessel's Function.
- Q5. Discuss Armstrong's method of indirect FM generation in detail.
- .Q6. Explain the TDM principle. Draw a circuit diagram to illustrate the flat-top smapling. Draw the block diagram of PCM shceme and explain its functionality.
- Q7. Show that the equivalent noise bandwidth of a low pass filter is $\frac{\pi}{2}$ times of its 3dB bandwidth F_{3dB} .
- Q8. Describe PWM and PPM generation with a neat labeled diagram.
- Q9. Quantify the noise performance of frequency modulated systems in detail.

Section-C

Note: Attempt any two questions from this section. $(15 \times 2=30)$

- Q10. A compact disk (CD) recorsing system smaples each of two stereo signals with a 16-bit analog-to digital converter (ADC) at 44.1 kb/s.
 - (i) Determine the output signal-to-quantizing ratio for a full-scale sinusoid.
 - (ii) The bit stream of digitized data is augmented by the addition of error-correcting bits, clock extraction bits, and display and control bit fields.

 These additional bits represent 100 percent overhead. Determine the output bit rate of the CD recording system.
 - (iii) The CD can record an hour's worth of musci.

 Determine the number of bits recorder on a CD.
 - (iv) For a comparison, a high-grade collegiate disctionary amy contain 1500 pages, 2 columns per page, 100 lines per columns, 8 words per line, 6 letters per word, and 7 b per letter on average. Determine the number of bits required to describe the dictionary, and estimate the number of comparable books.

Q11. Write a short note on AWGN. Calculate the Power Spectrum Density (PSD) corresponding to the autocorrelation function x (t) of a random process shown in figure 2 below:

Q12. How is the human voice modeled? What do you mean by VOCODER? Explain the generation of LPC VOCODER system.