

B.TECH.

Theory Examination (Semester-VI) 2015-16

DIGITALSIGNALPROCESSING

Time : 3 Hours

Max. Marks : 100

Section-A

Q1. Attempt all question.
$(2 \times 10=20)$
(a) Define DSP and its applications.
(b) Define computational efficiency of FFT.
(c) What are Gibbs Oscillations?
(d) What substitution is made in place of s in case of bilinear transformation?
(e) Write the time reversal and circular frequency shift property of DFT.
(f) Write the relationship between DFT and Z transform.
(g) Write five differences between Analog and Digital filters.
(h) Write five differences between IIR and FIR filters.
(i) Find the linear convolution of $S_{1}(n)=(1,2,3,4)$ and $S_{2}(n)=(2,3,2,1)$
(j) What is linear phase FIR Filter?

Section-B

Q2. Attempt any five questions.

(a) Determine $\mathrm{H}(\mathrm{z})$ using the impulse invariant technique for the analog system function :

$$
H(s)=\frac{1}{(s+0.5)\left(s^{2}+0.5 s+2\right)}
$$

(b) Define DSP. Draw the block diagram of DSP and explain its components.
(c) Calculate the product of the DFT's of the two sequences $\mathrm{s}_{1}(\mathrm{n})$ and $\mathrm{s}_{2}(\mathrm{n})$, where $\mathrm{s}_{1}(\mathrm{n})=\{1,1,1,1\}$ and $S_{2}(n)=\{1,2,1,2\}$
(d) Realise an FIR filter whose impulse response is $h(n)=\{2,5,6,3,6,5,2\}$
(e) Drive and draw the butterfly diagram for DIFFFT for $\mathrm{N}=8$
(f) Given the system function $H(z)=\frac{2+8 z^{-1}+6 z^{-2}}{1+8 z^{-1}+12 z^{-2}}$. Realise it using ladder structure.

Section-C

Attempt any two questions.

$(15 \times 2=30)$

Q3. Given $\mathrm{x}(\mathrm{n})=2^{\mathrm{n}}$ and $\mathrm{N}=8$ find $\mathrm{X}(\mathrm{K})$ using DIT FFT algorithm. Also calculate the computational reduction factor. Explain frequency transformation with LPF to HPF conversion formula.

Q4. (i) Determine the response of a discrete-time system to input signal $s(n)=\{2,1,3,1\}$, if the unit-sample response is of the system is $h(n)=\{1,2,2,-1\}$
(ii) The desired response of a low-pass filter is

$$
H_{d}\left(e^{j w}\right)= \begin{cases}e^{-j 3 w,}, & \frac{-3 \pi}{4} \leq \omega \leq \frac{3 \pi}{4} \\ 0, & \frac{3 \pi}{4}<|\omega|<\pi\end{cases}
$$

Determine $\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)$ for $\mathrm{M}=7$ using a hamming window.

Q5. Design a digital chebyshev filter to satisfy the constraints :
$0.707 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad 0 \leq \omega \leq 0.2 \pi \quad$ Using bilinear transformation with $\mathrm{T}=1 \mathrm{~s}$

$$
\left|H\left(e^{j \omega}\right)\right| \leq 0.1, \quad 0.5 \pi \leq \omega \leq \pi
$$

